MAT-02500 Todennäköisyyslaskenta
Tentti 5.3.2014 / Kimmo Vattulainen

- Vastaa jokainen tehtävä eri konseptille.
- Funktiolaskin sallittu.

1. Henkilöt A, B ja C aikovat vietä työpäiviä. He tulevat paikalle toisistaan riippumattomasti siten, että $A:n$ saapumistodennäköisyys on 0.50, $B:n$ 0.60 ja $C:n$ 0.80.
 a) Millä todennäköisyydessä peli-iltta onnistuu eli vähintään kaksi henkilöä tulee paikalle?
 b) Huoneessa on valot, joten ainakin joku on tullut paikalle. Millä todennäköisyydessä B on paikalla?
 c) Neljäs henkilö D sanoo tulevansa mukaan todennäköisyydessä 0.70, jos kaikki muutkin tulevat. Muuolloin D tulee todennäköisyydessä 0.40. Millä todennäköisyydessä D tulee paikalle?

2. Henkilön tuli olta 60 minuutin päästä töissä. Hänenlä on 3 eri matkustustapa A, B ja C. Millä tavalla matkustaja henkilö ehtii suurimmalla todennäköisyydessä ajoissa tähin?
 Muut matkaa kuuluvat ajat (kävelyajat pysäköil tämäntyyppiset alktähdän hänemäkset).
 Tapa A: Bussi kulkee säänkäänä, 30 minuutin välein, mutta henkilö ei tiedä aikataulua.
 Tapa B: Taksi saavuttaa keskimäärin 4 taksa tunnissa. Saapuvien taksiin lukemat 4 minuutin välein.
 Tapa C: Kävelien matka keskimäärin 4 minuutin, mutta olosuhteita johtuen aika vaihtelee, varvannin ollessa 100. Kävelyviisa oletetaan normaalisti jakautuneeksi.

3. Laske odotusarvo $E(X^2)$ ja todennäköisyys $P(X^2 > 4)$, kun
 a) X noudattaa diskreettiä jakaumaa, jonka tiheysfunktio $f(x) = \frac{x}{10}$, $x \in \Omega = \{1, 2, 3, 4\}$
 b) $X \sim \text{Bin}(3, 0.4)$
 c) X noudattaa jatkuvaa jakaumaa, jonka tiheysfunktio $f(x) = \frac{2x}{15}$, $x \in \Omega = [1, 4]$
 d) $X \sim \text{N}(2, 9)$

4. Sähköyhtiö myy pörssisähköä, jollain sähkön hinta vaihtelee päivittäin ja on kiinteän hintailennin ala yhden vuorokauden ajan. Kuluttaja on todennäköisesti hinnan X (euro/100 kWh) noudattava jakaumaa
 $$f(x) = \frac{3}{98} x^2, \quad x \in \Omega_X = [3, 5]$$
 Kuluttajan oman vuorokausikulutuksen Y (100 kWh/vrk) jakauma on
 $$g(y) = \frac{2}{3} y, \quad y \in \Omega_Y = [1, 2]$$
 Oletetaan, että kulutus on riippumaton sähkön hinnasta.
 a) Milloin on yhden vuorokauden kulutuksen hinnan odotusarvo?
 b) Keskimäärin kuinka monenä päiviä vuojossa (365 päivää) vuorokauden kulutus maksaa 6.00 euroa tai enemmän?
MAT-02500 Todennäköisyyslaskenta, kaavoja ja taulukoita

1. \[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

2. \[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

3. \[P \left(\bigcap_{i=1}^{n} A_i \right) = \prod_{i=1}^{n} P(A_i) - \sum_{1 \leq j < k \leq n} P(A_j \cap A_k) + \sum_{1 \leq j < k < l \leq n} P(A_j \cap A_k \cap A_l) - \cdots + (-1)^{n+1} P \left(\bigcap_{i=1}^{n} A_i \right) \]

4. \[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \]

5. \[P \left(\bigcap_{i=1}^{n} A_i \right) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid \bigcap_{i=1}^{n-1} A_i) \]

6. \[P(B_k \mid A) = \frac{P(B_k \cap A)}{\sum_{i=1}^{n} P(B_i \cap A)} \]

7. Riippumattomuus: \(P(A \cap B) = P(A)P(B) \)

8. \[F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt \]

9. \[E(X) = \sum_{x \in \mathcal{X}} xf(x) = \mu, \quad E(X) = \int_{-\infty}^{\infty} x f(x) dx = \mu \]

10. \[\text{Var}(X) = \sum_{x \in \mathcal{X}} (x - \mu)^2 f(x) = \sigma^2, \quad \text{Var}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \sigma^2 \]

11. \[D(X) = \sqrt{\text{Var}(X)} = \sigma \]

12. \[X: f(x), \quad Y = h(X), \quad g(y) = f \left(h^{-1}(y) \right) \frac{d}{dy} h^{-1}(y) \]

13. \[E(h(X)) = \sum_{x \in \mathcal{X}} h(x)f(x), \quad E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x) dx \]

14. \[E(aX + b) = aE(X) + b, \quad \text{Var}(aX + b) = a^2 \text{Var}(X) \]

15. \[P(|X - \mu| \geq t) \leq \frac{\sigma^2}{t^2}, \quad \forall t > 0 \]

16. \[\text{Exp}(\lambda) : f(x) = \lambda e^{-\lambda x}, \quad x \geq 0, \lambda > 0, \quad E(X) = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2} \]

17. \[\text{Bin}(n, p): f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, 2, \ldots, n, \]

18. \[E(1(X)) = np, \quad \text{Var}(X) = np(1-p) \]

19. \[\text{Pol}(\lambda) : f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \ldots, \quad E(X) = \lambda, \quad \text{Var}(X) = \lambda \]

20. Riippumattomuus: \(f(x_1, x_2) = f_1(x_1)f_2(x_2) \)

21. \[\text{Cov}(X, Y) = E((X - \mu_x)(Y - \mu_y)) = E(XY) - E(X)E(Y) = \sigma_{XY} \]

22. \[\text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)}} = \rho_{XY} \]

23. \[\text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) + 2ab \text{Cov}(X, Y) \]

24. \[\text{Jos } X \sim N(\mu, \sigma^2), \quad \text{niin } \bar{z} = \frac{X - \mu}{\sigma} \sim N(0, 1) \]

25. \[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \frac{\sigma^2}{n}) \]

26. \[S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right) \]

27. \[\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \]

28. \[\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim \mathcal{T}(n-1) \]

29. \[F = \frac{S^2_{X}/\sigma^2_{X}}{S^2_{Y}/\sigma^2_{Y}} \sim F(n_X - 1, n_Y - 1) \]