1. Oletetaan, että populaatio on normaalijakaumunut. Olet testamaassa hypoteesiparid $H_0: \sigma = \sigma_0$ ja $H_1: \sigma > \sigma_0$.

 (a) Miten suorittaisit testauksen riskitasoilla $\alpha = 0.05$? Mistä aloitat, mitä testausmenetelmää käytät? Miten tulkitaisit testitulokset?

 (b) Oletetaan, että riskitasoa ei ole annettu ja että testin päättäeksi saat p-arvon 0,061. Miten tulkitset tätä tulosta? Hyväksytkö vai hylkäätkö hypoteesin H_0? Mitkä tekijät vaikuttavat päättöeesiin? (Tähän ei sisä ole olemassa yhtä oikeaa vastusta.)

2. Tutkittaessa jokien sedimenttipitoisuksia on havaittu, että pitoisuuden logaritmi noudattaa hyvinkin tarkasti normaalijakaumaa, tosin eri jakaumaa eri aikoina vuotta. Mitattaessa eriässä joessa tietyyn aikaa vuodelta sedimenttipitoisuudet $n = 9$ peräkkäisenä päivänä saatiin logaritminen otoskeskiarvoksi $\bar{x} = 3,21$ ja otoosvarianssiksi $s^2 = 1,77$ (yksikkönä ln(mg/l)).

 Etsi sedimenttipitoisuuden logaritmin odotusarvot vuoden aikana vuodesta sekä a) 95% luottamusväli että b) 95% luottamussyliri.

3. Tietyn tuotteen asennusaikaa tutkihtiin ottamalla kahdeelta asennusryhmältä kummaltakin 21 tuotteen asennusajan satunnaisototset. Ryhmän A otoosvarianssi oli $s^2_A = 0,0289$ h2 ja ryhmän B otoosvarianssi oli $s^2_B = 0,0165$ h2.

 a) Testaa kummallekin ryhmälle erikseen onko populaatiolajontaa σ korkeintaan 0,125 h.

 b) Testaa eroavatko ryhmät asennusaikojen varianssien osalta. Käytä riskitasoa 0,05.

4. Lanjoissa tutkimuksissa koehenkilöille annettuii lumelääkettä, mutta kerrrottiin sen olevan flunssan oireita helpottavaa lääketä. Tällöin esine-tyvät seurauvat huolit sivuvaikutuksien: päänsärky (P, 5%), unelaissuus (U, 7%), vatsavaiva (V, 4%), eivät mainittavat sivuvaikutuksia (E, 84%).