Huom! Mukana ei saa olla kirjallisuutta, tietokoneita eikä taulukoita. Funktiolaskimet ovat sallittuja. Käytä jaettua kaavakokoelmaa ja palauta se.

1. Tutkittaessa jokien sedimenttipitoisuksia on havaittu, että pitoisuuden logaritmi noudatta hyvinkin tarkasti normaalijakaumaa, tosin eri jakaumaa eri aikoina vuotta. Mitattaessa eräässä josta tiettyyn alaan vuodesta sedimenttipitoisuuden \(n = 9 \) eräkahdessa ne saatiin logaritmien otoskeskiarvoksi \(\bar{x} = 3.21 \) ja logaritmien otosvarianssiksi \(s^2 = 1.77 \). (Yksikkö tässä on \(\ln(\text{mg/l}) \).) Etsi sedimenttipitoisuuden logaritmin odotusarvolle tuohon alaan vuodesta sekä a) 95% luottamusväliä että b) 95% luottamusyläräjä.

(Tästä ei ole mitenkään heippaa saada luottamusväliä itse sedimenttipitoisuuden odotusarvolle, sillä odotusarvon logaritmi ei ole logaritmin odotusarvo. Sedimenttipitoisuuden jakauma on ns. lognormaali jakauma, jonka välileimointi on hankalaa.)

2. Tuotteen pakkaamisajan käytössä olevalla tavalla A epäillään olevan varianssi saadaan turhan suuri (mikä aiheuttaa linjalla odotusaikahukkua). Ehdotetulla toisella tavalla B pakkaaminen on keskimäärin yhtä nopeaa, mutta onko sen varianssi yhtään pienempi?

Asian testamiseksi mitattiin pakkaamisajat \(n_A = 20 \) kertaa tavalla A ja \(n_B = 25 \) kertaa tavalla B ja saatiin otoshajonnat \(s_A = 47.98 \) sekä \(s_B = 32.02 \) sek. Mikä on testin tulos ja miksi, jos riskitaso on \(\alpha = 0.05 \)? Pakkaamisaikojen jakaumat oletetaan tässä normaaliekoni.

3. Mitä testataan erilaisilla \(\chi^2 \)-testeillä (kontingenssitauluilla) ja miten?

Testaa nollahypoteesi, jonka mukaisesti bakteerimääräiden median tulos ovat samat sekä antibakteerisille että tavallisille saippuoille riskitasolla 0.05 käyttäen Mann–Whitney-testää.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>45</td>
</tr>
</tbody>
</table>