ELT-61150 Ihmisen fysiakaaliset ominaisuudet

Tentti 11.5.2017 / Juha Nousiainen

Oma laskin on sallittu.

1. Henkilö nostaa oheisen kuvan mukaisesti aluksi selkälähden ja sitten jalan ojentajalihden avulla selkä suoran painavan naakkaan. Mallinnetaan koko ylävartalon (torso, pää ja yläraja) yhtenä jäykkänä kappaleena, jonka pituus on L=65 cm. Koko ylävartalon massa on 50 kg, ja sen massakeskipiste sijaitsee 45 cm etäisyydellä ristiselän alimmasta nikamasta, jonka suhteen selkä kääntyy. Taakan massa on 20 kg, ja siihen vaikuttava maan vetovoima vaikuttaa vapaakappaleen yläpäähän etäisyydellä L=65 cm ristiselälästä. Oletetaan, että selän ojentajalihaksen voima M vaikuttaa ylävartalon massakeskipisteeeseen, ja sen suunta muodostaa 10 asteen kulman suoran selkärangan kanssa. Ristiselään vaikuttaa reaktiovoima R. (max. 20 p.)

Tarkastellaan kahta tilannetta, joissa selkäranka muodostaa kulman $\Phi=90^\circ$ (vaakasuora) ja 45° (viisto) pystyaselin suhteen.

a) Piirrä vapaakappalekuva nostotilanteesta, siinä vaikuttavista voimista ja vääntömomenteista tilanteessa, jossa selkäranka muodostaa 45 asteen kulman yläviistoon.

b) Ratkaise ja esitä tulokset taulukkona, kuinka suuria ovat lihasvoima M ja reaktiovoima R cm. kahdella nostokulman arvolla (eli M ja R selän nostokulman funktiona).

Päättele, kuinka suuria lihasvoima M ja reaktiovoima R ovat nostettessa selkä pystysuorassa.

2. Vastaa lyhyesti päätieyteissään seuraaviin kysymyksiin (max. 20 p.):

a) Vertaile lyhyesti kävelyyn ja juoksun kinematiikkaa (liike).

b) Vertaile lyhyesti luun ja jänteen mekaanisia ominaisuuksia liikunnan kannalta

c) Vertaile lyhyesti konsentrista ja eksentristä lihasaktiivisuutta.

d) Aineenvaihdunnan tuottama lämpö voi poistua kehosta monella tavalla. Vertaile lyhyesti kahdessa tilanteessa, juokseminen kesähelteessä ja uiminen viileässä vedessä, millä fysikaalisilla mekanismeilla lämpö poistuu kehosta ympäristöön ja mitkä tekijät siihen vaikuttavat.

Tehtävät 3 ja 4 toisella sivulla
3. **Verenkierto.** (vastaa lyhyesti muutamalla lauseella kuhunkin kohtaan) (max. 20 p.)
 a) **Luettele ja selitä** tekijötä, jotka vaikuttavat veren viskositeettiin.
 b) **Miten** voi arvioida verenvirtauksen pyörteisyyttä ja mikä merkitys pyörteisyydellä on verenkierrolle?
 c) **Selvitä, mitä tarkoittaa** valtimoiden komplianssi ja mikä sen merkitys on verenkierron fysiikan toiminnan kannalta.
 d) **Selvitä mitä tarkoittaa** verisuonten virtausvastus ja mikä sen merkitys on verenkierron fysiikan toiminnan kannalta.

4. Tarkastellaan jättäläismustekalan hermosolua, jossa on mitattu lämpötilassa T=6 °C solun lepotilan aikana seuraavat solun sisäiset ja ulkoiset ionikoncentraatit (mM) sekä solukalvon suhteelliset ioniläpäisyvyydet eri ioneille (max. 25 p.):

<table>
<thead>
<tr>
<th>Ioni</th>
<th>Sisäpuoli</th>
<th>Ulkopuoli</th>
<th>Läpäisyvyys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>50</td>
<td>440</td>
<td>0,04</td>
</tr>
<tr>
<td>K⁺</td>
<td>400</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

 a) **Ratkaise** Na⁺- ja K⁺-ionin *Nernstin jännite* sekä *solukalvon kalvojännite*.
 b) **Ratkaise**, kuinka suuri on likimain solun sisäisen nesteen Cl⁻-pitoisuus, kun solun ulkopuolen nesteen Cl-ionipitoisuus on 560 mM ja solukalvo läpäisee hyvin Cl-ioneja.
 c) **Kuvaile** (esim. nuolien suunnan ja paksuuden avulla), millainen sähkökemiallinen nettovoima (gradientti) vaikuttaa kuhunkin ionin (Na, K, ja CI) solun lepotilan aikana.
 d) **Selitä lyhyesti**, mitä tarkoittaa käsite *aksonin karakteristinen pituus* ja mitä merkitystä sillä on hermosolun toiminnan kannalta.
\[\vec{F} = m\vec{a} \quad E_k = \frac{1}{2}mv^2; \quad E_p = mgh \]

\[\Delta x = v_t + \frac{1}{2}at^2 \]

\[\text{GSN} = a^{2.5} t_{coll}; \quad a = \frac{\Delta v}{t_{coll}} = \frac{1 + e}{t_{coll}} v_i \]

\[\tau = \vec{r} \times \vec{F}; \tau_z = rF \sin \Theta \]

\[F = -kx.\quad \frac{F_{\text{applied}}}{A} = \frac{kL_0L - L_0}{A} \quad \sigma = \frac{F}{A} \quad Y = \frac{kL_0}{A} \quad \sigma = Y \epsilon \quad \epsilon = \frac{L - L_0}{L_0} \]

\[\Delta U = Q_{\text{met}} + Q_{\text{loss}} - W. \quad Q = Q_{\text{met}} + Q_{\text{loss}}. \]

\[\frac{1}{A} \frac{dQ}{dt} = -k \frac{dT}{dx} \sim -k \frac{\Delta T}{\Delta x}. \quad \Delta T = \frac{Q}{mc} \quad \text{BMR} = cm_b^{3/4} \quad 1 \text{ kcal} = 4.2 \text{ kJ} \]

\[R = \varepsilon \sigma T^4 - \left(\frac{dQ}{dt} \right)_{\text{loss}} = RA = \varepsilon_{\text{skin}} \sigma T_{\text{skin}}^4 A_{\text{skin}} \]

\[\Delta P = \frac{T}{R} \quad \text{or} \quad T = R(\Delta P) \quad \Delta P = \frac{2w \sigma}{R} = \frac{2T}{R} \quad R_e = \frac{\rho u^2}{\eta u/d} = \frac{\rho ud}{\eta} = \frac{ud}{v} \]

\[P_1 + \frac{1}{2} \rho u_1^2 + \rho g y_1 = P_2 + \frac{1}{2} \rho u_2^2 + \rho g y_2 \]

\[W = \int_{V_1}^{V_2} F dL = \int_{V_1}^{V_2} (F/A)(A dL) = \int_{V_1}^{V_2} P dV. \]

\[R_{\text{flow}} = \frac{\Delta P}{Q} \quad C_{\text{flow}} = \frac{\Delta V}{\Delta P} \quad P = \frac{\Delta W}{\Delta t} \]

\[Q = \frac{\pi R^4}{8 \eta L} (P_1 - P_2) \quad V(P) = V_d + C_{\text{flow}} P. \]

\[P_{sa}(t) = P_{\text{systole}} e^{-t/\tau} \quad \tau = RC \]

\[Z = \rho v_s \quad R_{\text{refl}} = \frac{L}{L_i} = \frac{P_i^2/2Z_i}{P_i^2/2Z_1} = \frac{P_i^2}{P_1^2} \]

\[= \left(\frac{Z_2 - Z_1}{Z_1 + Z_2} \right)^2 = \left(1 - \frac{Z_2/Z_1}{1 + Z_2/Z_1} \right)^2 \]

\[n_1 \theta_1 = n_2 \theta_2 \]

\[f = \frac{n_j}{\sum_{i=1}^{n-1} P_{i,i+1}} \]

\[V_i = -\frac{kT}{q} \ln \left(\frac{[C]^j}{[C]^0} \right) \quad k = 1.38 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1} \quad q = 1.602 \cdot 10^{-19} \text{ C} \]

\[V_i = -\frac{kT}{q} \ln \left(\frac{p_K[K^+] + p_{Na}[Na^+] + p_{Cl}[Cl^-]}{p_K[K^+] + p_{Na}[Na^+] + p_{Cl}[Cl^-]} \right) \]

\[\lambda = \sqrt{\frac{r_m}{r_i} + s_i} \quad \sqrt{\frac{r_m}{r_i}} \quad \frac{\Delta V_{bh}}{R_m(l - e^{-l/r})} \]

3(3)