
1) Harmonisen sähkömagneettisen tasoaallon taajuus on 110 MHz. Se etenee materiaalissa, jonka suhteellinen permittivisyys on 5,0 ja suhteellinen permeabiliiteetti 1100. Aallon intensiteetti on 2,0·10^{-7} W/m². Laske
 a) Aallonpituus ja aallon etenemisnopeus.
 b) Sähkökentän ja magneettikentän amplituidet.

2) Kaksi varattua palloa (q₁ = +8.0 μC ja q₂ = +3.0 μC) on tyhjiössä ja sijaitsevat kuvan mukaisesti y-akselille yhtä kauka origosta. Laske sähköinen potentiaali x-akselilla pisteessä P, jos potentiaali äärettömän kaukana on nolla.

3) Tasolevykondensaattorin levy ovat nelioön muotoiset, mitoitaan 30 cm x 30 cm. Niiden välimatka on 4,0 mm. Kuvan mukaisesti levyjen välissä on polyeteenieriste (s = 2,5), joka on vedetty puoliksi ulos. Tällöin sisteemi voi approksimoida kahtena rinnankytkeytynä kondensaattorina. Kondensaattori on kytketty 20 V jännitelähteeseen.
 a) Mikä on kondensaattorin kapasitanssi?
 b) Mikä on levyjen varauvistyetys polyeteenieristen kohdalla?
 c) Mikä on kondensaattorin varastoitu energia?

4) Halkaisijaltaan ympyrän muotoisen kelasydämen säde on 1,2 cm ja pituus 9,0 cm. Sydän on valmistettu materiaalista, jonka suhteellinen permeabiliiteetti on 900. Sydämen päälle kääntynyssä ensiökellassa on 100 kierrosta ja siinä kulkee 50 Hz vaihtoiv, jonka tehollisarvo on 2,0 A. Solenoidin päälle on kierretty 50 kierroksen toisikela.
 a) Laske koljen keskinäisinduktanssi.
 b) Laske toisiokelan indusoituva SMV:n amplitudi.

5) Suora vaakasuora johdin (massa m, pituus l) pääsee liukumaan kitkatta kuvan pitkiä pystyjohtteita pitkin. Johteen on yläpäästä yhdistetty vastuksella R. Systeemi on asetettu tyhjiössä piirin tasoon nähden kohtisuoraan homogeeneen magnetiikenttään (vuontihyes B). Kun johdin päästään putoamaan alaspäin, havaitaan, että jonkin ajan kuluttua se saavuttaa rajanopeuden V.
 a) Minkä taka nopeus ei ole tasaisesti kiihtyvä?
 b) Mikä on rajanopeuden V lauseke?

6) Pitkässä metalliputkessa, jonka sisä säde on a ja ulkosäde b, kulkee virta I. Jostakin syystä virrantiheys J ei ole jakautunut putkeen tasaisesti, vaan se riippuu putken keskiakselilla mitatusta etäisyydestä r lausekkeen J(r) = Br² mukaisesti (B on vakio). Kirjoita magnetiikenttä säteen r funktiona putken metalliosassa alueessa, jossa a ≤ r ≤ b.
Laaja fysiikka II: kaavoja

\[m_u = 9.109 \, 3897 \times 10^{-31} \text{kg} = 5.485 \, 799 \, 03 \times 10^{-4} \text{u} = 0.510 \, 999 \, 06 \text{MeV/c}^2 \]
\[m_p = 1.674 \, 9286 \times 10^{-27} \text{kg} = 1.007 \, 276 \, 470 \text{u} = 938.272 \, 31 \text{MeV/c}^2 \]
\[e = 1.602 \times 10^{-9} \text{C} \]
\[\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2/\text{Nm}^2 \]
\[\mu_0 = 4\pi \times 10^{-7} \text{N/A}^2 \]
\[c = 2.998 \times 10^8 \text{m/s} \]
\[h = 6.626 \times 10^{-34} \text{Js} \]

\[P = \frac{1}{2} \mu \omega^2 A' v \quad n_1 \sin \theta_1 = n_2 \sin \theta_2 \quad \sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) \]

\[I = I_0 \sin^2 \alpha \quad I = I_0 \cos^2 (\gamma - \sin^2 \alpha \quad I = \frac{m^2}{2} \sin^2 (\gamma - \sin^2 \alpha \quad I = \frac{\pi a}{\lambda} \sin \theta \quad y = \frac{\pi d}{\lambda} \sin \theta \]

\[a \sin \theta = n \lambda \quad d \sin \theta = n \lambda \quad 2d \sin \theta = n \lambda \quad \Delta \theta \approx \frac{\lambda}{a} \quad \Delta \theta \approx 1.22 \frac{\lambda}{d} \]

\[f' = \frac{(v - v_o)}{(v - v)} \quad f'' = \frac{(c - v)}{(c + v)} \frac{f}{f} \]

\[\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \quad \begin{array}{l}
\nu = \sqrt{\frac{T}{\mu}} \quad \nu = \sqrt{\frac{E}{P}} \\
\nu = \sqrt{\frac{\gamma P}{\rho}} \quad \nu = \sqrt{\frac{1}{\mu \varepsilon}}
\end{array} \]

\[\phi_E = 0 \]
\[\phi_E = \int_A \bar{D} \cdot d\bar{A} \quad \bar{D} = \varepsilon \bar{E} \]
\[\phi_M = \int_A \bar{B} \cdot d\bar{A} \quad \bar{B} = \mu \bar{H} \]
\[\bar{F} = q \bar{E} + q \bar{v} \times \bar{B} \]

\[\bar{F} = \frac{q \bar{e}}{4 \pi \varepsilon_0 \bar{r}} \quad d\bar{D} = \frac{dq}{4 \pi r^2} \bar{r} \quad C = \frac{\varepsilon A}{d} \]

\[H = \frac{I}{4\pi} \int \frac{d\bar{l} \times \bar{r}}{r^2} \quad H = \frac{I}{2\pi} \quad H = n I \quad H = \frac{I}{2a} \]

\[\Delta \bar{F} = I \bar{N} \times \bar{B} \quad \bar{t} = \bar{m} \times \bar{B} \quad \bar{m} = I \bar{A} \bar{\bar{n}} \quad \bar{m} = \frac{2pl}{\mu} \]

\[E_{\text{inl}} = \frac{d\Phi_M}{dt} \quad E_{\text{inl}} = L \frac{dI}{dt} \quad E_2 = M \frac{d\bar{l}}{dt} \quad L = \mu n^2 I A \quad M = \frac{N_2 \Phi_2}{I_1} \]

\[E = vB \quad w = \frac{1}{2} \varepsilon E^2 + \frac{1}{2} \mu H^2 \quad I = \langle \bar{S} \rangle = \bar{v} \langle w \rangle = \langle \bar{E} \times \bar{H} \rangle \]

\[E = hf \quad I = \Phi \quad I = I_0 \cos^2 \theta \]

1) Harmonisen sähkömagneettisen tasoallon taajuus on 110 MHz. Se etenee materiaalissa, jonka suhteellinen permittivisyyys on 5.0 ja suhteellinen permeabiiteetti 1100. Aallon intensiteetti on 2.0 \(\cdot 10^{-7} \) W/m². Laske

3 a) Aallonpituus ja aallon etenemisnopeus.
 b) Sähkökentän ja magneettikentän amplitudit.

2) Tarkastellaan valon (aallonpituus 480 nm) diffraktiota kahdessa raossa. Rakojen leveys on 1.5 \(\mu \)m ja rakojen välimatka (vaspisteiden väli) on 6.0 \(\mu \)m. Tarkastelukulma on 7.0°.

 a) Mikä on raon eri päästä tulevien aaltojen matkaero ja vaihe-ero?
 b) Mikä on eri raon tulevien aaltojen matkaero ja vaihe-ero?
 c) Kirjoita intensiteetin lauseke kyseisessä kulmassa, jos se kulmassa nolla on \(l \).

3) Kuvan kytkenään on piirretty kaksi paristo sisäresistanssineineen ja muutama vastus.

 a) Laske virta (suunta ja suuruus) kussakin kytkenän haarassa.
 b) Laske potentiaaliero (jännite) pisteiden \(a \) ja \(b \) välillä.

4) Halkaisijaltaan ympyrän muotoisen kelasydämen säde on 1.2 cm ja pituus 9.0 cm. Sydän on valmistettu materiaalista, jonka suhteellinen permeabiiteetti on 900. Sydämen päälle käännyssä ensiökellassa on 100 kierrosta ja siinä kulkee 50 Hz vaihtovirta, jonka tehollisarvo on 2.0 A. Solenoidin päälle on kierretty 50 kierroksen toisiokela.

 a) Laske koljen keskinäisinduktanssi.
 b) Laske toisiokelaan indusoituvan SMV:n amplitudi.

5) Pitkä suora eristetanko on varattu homogeenisesti ja sijoitettu tyhjään. Tagon säde on 4.0 cm ja sen materiaalin suhteellinen permittivisyyys \(\varepsilon_r \) = 2.1. Mittauksen perusteella sähkökenttä on 10 cm etäisyydellä tangoen keskiakselista on 20 kV/m.

 a) Mikä on tangoen tilavuusvarastipehys (C/m3)?
 b) Mikä on kenttä 3.0 cm etäisyydellä tangoen keskiakselista?

6) Pitkässä metalliputkessa, jonka sisä säde on \(a \) ja ulkosäde on \(b \), kulkee virta \(I \). Jostakin syystä virrantiheys \(J \) ei ole jakautunut putkeen tasaisesti, vaan se riippuu putken keskiakselilta mitatusta etäisyydestä \(r \) lusekkeen \(J(r) = Br^2 \) mukaisesti (\(B \) on vakio). Kirjoita magneettikenttä sateen \(r \) funktioa putken metallisasssa alueessa, jossa \(a \leq r \leq b \).
Laaja fysikka II: kaavoja

\[m_u = 9.1093897 \times 10^{-31} \text{kg} = 5.48579903 \times 10^{-4} \text{u} = 0.51099906 \text{MeV/c}^2 \]
\[m_p = 1.6749286 \times 10^{-27} \text{kg} = 1.007276470 \text{u} = 938.27231 \text{MeV/c}^2 \]
\[e = 1.60217733 \times 10^{-19} \text{C} \]
\[\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2/\text{Nm}^2 \]
\[\mu_0 = 4\pi \times 10^{-7} \text{N/A}^2 \]
\[c = 2.998 \times 10^8 \text{m/s} \]
\[h = 6.626 \times 10^{-34} \text{Js} \]

\[P = \frac{1}{2} \mu \omega^2 A^\nu \]
\[n_i \sin \theta_1 = n_i \sin \theta_2 \]
\[\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right) \]

\[I = I_0 \frac{\sin \alpha}{\alpha^2} \quad I = I_0 \cos^2(\gamma) \frac{\sin \alpha}{\alpha^2} \quad I = \frac{I_0}{N^2} \frac{\sin^2(\gamma)}{\sin^2(\nu)} \]
\[\alpha = \frac{\pi a}{\lambda} \sin \theta \quad \gamma = \frac{\pi d}{\lambda} \sin \theta \]
\[a \sin \theta = n\lambda \quad d \sin \theta = n\lambda \quad 2d \sin \theta = n\lambda \]
\[\Delta \theta \approx \frac{\lambda}{a} \quad \Delta \theta \approx 1.22 \frac{\lambda}{d} \]

\[f' = \frac{(v - v_0)}{(v - v_3)} f \quad f'' = \frac{(c - v)}{(c + v)} f \]

\[\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \quad v = \sqrt{\frac{E}{\mu}} \quad \frac{\partial P}{\partial \rho} = \sqrt{\frac{\rho}{\mu}} \quad \frac{1}{\mu e} \]

\[\phi_E = Q \]
\[\phi_{E,A} = \int A \cdot d\vec{A} \quad \vec{D} = \varepsilon \vec{E} \]
\[\phi_{M,A} = \int A \cdot d\vec{A} \quad \vec{B} = \mu \vec{H} \]
\[\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} \]

\[\vec{F} = \frac{q_0 q}{4\pi \varepsilon_0 r^2} \hat{r} \quad d\vec{D} = \frac{dq}{4\pi r^2} \hat{r} \]
\[C = \frac{eA}{d} \]
\[H = \frac{I}{4\pi r} \quad H = \frac{NI}{2\pi r} \quad H = nI \quad H = \frac{I}{2a} \]
\[\Delta \vec{F} = I\vec{A} \times \vec{B} \quad \vec{t} = m \times \vec{B} \]
\[E_{\text{kin}} = \frac{d\Phi_M}{dt} \quad E_{\text{mag}} = L \frac{dI}{dt} \quad E_2 = M \frac{dL}{dt} \quad L = \mu n^2 I A \quad M = \frac{N_2 \Phi_2}{I_1} \]
\[E = vB \quad w = \frac{1}{2} qE^2 + \frac{1}{2} \mu H^2 \quad I = \langle \vec{S} \rangle = \vec{v}\langle w \rangle = \langle \vec{E} \times \vec{H} \rangle \]
\[E = hf \quad I = E\Phi \quad I = I_o \cos^2 \theta \]